The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study

نویسندگان

  • DONOVAN P. GERMAN
  • STEVEN D. ALLISON
چکیده

Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, b-glucosidase, b-xylosidase, a-glucosidase, and N-acetyl-b-D-glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose-degrading enzyme b-glucosidase showed a significant (P = 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Logistic and Michaelis-Menten Multiphasic Models for Analysis of in vitro Gas Production Profiles of some Starchy Feedstuffs

Two multi-phasic models (logistic (LOG) and Michaelis-Menten (MM)) with three sub-curves were used to describe gas production kinetics of corn (CG), barley (BG), wheat (WG) and triticale (TG) grains. In each model sub curve, 1 describes the gas production caused by fermentation of the soluble fraction, gas production caused by fermentation of the non-soluble fraction is described in sub curve 2...

متن کامل

Kinetics Properties of Guaiacol Peroxidase Activity in Crocus sativus L. Corm during Rooting

Guaiacol peroxidases (GP) are haem-containing enzymes participating in many physiological processes in plants. The expression pattern of these enzymes is organ-specific and developmentally regulated. Methods: The presence of GP activity in extract samples, prepared from Crocus sativus L. corms that were either dormant or rooting for 3, 6 and 10 days, was investigated. Results: Kinetic studies r...

متن کامل

Kinetics and Mechanism of Oxidation of n-Pentanol by Tetramethylammonium Fluorochromate

The oxidation of n-pentanol by tetramethylammonium fluorochromate in acidic solution wasstudied using spectrophotometric technique. The reaction was arranged to be under pseudo firstorderconditions respect to the oxidant. A Michaelis-Menten type kinetic was observed respect tothe substrate. The reaction is catalyzed by hydrogen ions. Dependences of the reaction rates ontemperature and different...

متن کامل

ERK as a Model for Systems Biology of Enzyme Kinetics in Cells

A key step towards a chemical picture of enzyme catalysis was taken in 1913, when Leonor Michaelis and Maud Menten published their studies of sucrose hydrolysis by invertase. Based on a novel experimental design and a mathematical model, their work offered a quantitative view of biochemical kinetics well before the protein nature of enzymes was established and complexes with substrates could be...

متن کامل

Modelling potassium uptake by wheat

A model has been used to simulate potassium (K) uptake by wheat in a pot culture experiment. Three soils from India, namely Alfisol, Inceptisol and Vertisol, were differentially K exhausted by Sudan grass (Surghum vulgare var. Sudanensis) for a period of 280 days and were used to simulate potassium uptake by wheat (Triticum aestivum) and also to predict the amounts of K released or fixed during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012